
Eur. Phys. J. D 25, 77–87 (2003)
DOI: 10.1140/epjd/e2003-00080-2 THE EUROPEAN

PHYSICAL JOURNAL D

Near dipole-dipole effects in a V-type medium with vacuum
induced coherence
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Abstract. In this paper we investigate the influence of the local field correction (LFC) on the optical
behavior of a closed V -type system. We consider a V configuration such that quantum interference between
the two decay channels to the ground atomic level is important. When the two optical transitions are
coupled by one laser field we find that LFC does not destroy the non-absorption resonance that usually
appears due to quantum interference. On the other hand, the absorption profile is deformed due to the
presence of LFC. We have also studied the case of a driving laser field coupling one of the optical transitions,
and a probe laser field coupling the other one. In this field configuration the local field modifies substantially
the optical response. We have found that the system can switch between absorption and gain by controlling
the near dipole-dipole parameter. On the other hand, the relative phase between the pump and probe fields
allow us to change the system from absorption to gain.

PACS. 42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light;
electromagnetically induced transparency and absorption – 42.50.Ct Quantum description of interaction
of light and matter; related experiments – 42.50.Fx Cooperative phenomena in quantum optical systems

1 Introduction

In recent years, there has been considerable inter-
est in quantum interference and coherence effects in
multilevel atom systems induced by coherent electromag-
netic fields. Many phenomena, such as electromagneti-
cally induced transparency (EIT) [1,2], lasing without
inversion (LWI) [3–5], refractive index enhancement with-
out absorption [6–8], and giant nonlinearity [9–11], have
been predicted and experimentally demonstrated and have
modified the way we look at photon absorption and emis-
sion processes. During the last decade, many different
schemes have been studied in Λ and V atoms where the
coherence is created by the driving fields.

Another way of generating coherence is connected with
the relaxation processes such as spontaneous emission. It
is well-known how quantum coherence can be created in
interactions involving a common bath with a set of closely
lying states. This rather contraintuitive phenomenon has
been shown by Agarwal [12]. If the two upper levels are
very close and damped by the usual vacuum interactions,
spontaneous emission cancellation can take place [13–16].
Then, the two decay pathways from the excited doublet
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to the ground state are not independent, which offers the
possibility to trap population in the excited levels when
some particular conditions hold [5,17–20]. Quantum in-
terference between the two transition channels connect-
ing the ground-level is responsible for many novel effects,
such as dark spectral lines [21,22], narrow resonances and
probe transparency [16], lasing without population inver-
sion [1,3], phase dependent line shapes [19,20], etc. Al-
though the existence of the interference effects depends on
a very stringent condition, viz., the dipole matrix moments
for the two closely lying states decaying to a common final
state should be nonorthogonal [12], several new methods
to bypass this strict condition have been proposed [23].
Furthermore, Agarwal and Patnaik have recently shown
that the anisotropy of the vacuum of the electromagnetic
field could lead to quantum interference among the decay
channels of closely lying states, even if the dipole matrix
elements were orthogonal [24].

All previous studies in the emission cancellation in V -
type atoms with closely excited levels have been carried
out in the framework of three-level Maxwell-Bloch equa-
tions in dilute media, that is, the interactions between
atoms, which are manifested through dipole-dipole inter-
actions, have been ignored. This procedure is generally
accurate for large interatomic separations and low values
of dipole moments. However, when the atomic system is
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working near resonance, the atoms can acquire a large
dipole moment. Moreover, if the relative distance between
atoms in some dense-atom system is not large, the lo-
cal field correction (LFC) or near dipole-dipole (NDD)
interaction between atoms cannot be neglected. In this
case, the effective field acting on an atom is the local
field, which is due to both the external field and the re-
maining atomic dipoles of the sample [25]. The inclusion
of LFC in Maxwell-Bloch equations has been extensively
considered for two-level atoms. As a result, Bloch equa-
tions become nonlinear regarding the population inversion
and polarization amplitude, which leads to many inter-
esting phenomena, such as self-phase modulation in self-
induced transparency [26,27], linear and nonlinear spec-
tral shifts [28,29], novel inversion and ultrafast switching
effects [30], and intrinsic optical bistability (IOB) [31–34].
This last phenomenon has been experimentally confirmed
by Hehlen et al. by using Yb3+ ions in a Cs3Y2Br9 crys-
tal [35,36]. The local-field renormalization of the sponta-
neous emission rate of a two level atom embedded in an
absorptive and dispersive linear dielectric has been ob-
tained from a fully microscopic quantum-electrodynamic
derivation by several authors [37–47].

Obviously, the coherence and interference effects in
multilevel atoms are not immune to the influence of lo-
cal field. In fact, an enhancement of the inversionless
gain by more than two orders of magnitude have been
obtained by Dowling and Bowden in lasing without in-
version by using a coherently prepared three-level Λ sys-
tem [48]. A piezophotonic switching effect has been found
by Manka et al. in the same atomic system [49] when the
density of the medium slightly changes. The characteris-
tics of coherent trapping states in a dense medium com-
posed of Λ atoms have been investigated by Jyotsna and
Agarwal [50].

The aim of this paper is to investigate the influence
of near dipole-dipole interaction on the steady-state pop-
ulation inversion and atomic polarization of a closed V -
type atom when quantum interference between the two
decay channels to the ground atomic level is considered.
Our atomic system is similar to that studied by Paspalakis
and Knight [20] but the effect of the local field is included.
Specifically, we consider two different field configurations:
a single laser field coupling simultaneously the ground
state with the two closely excited levels, and a degenerate
pump-probe configuration. In the last case, the interplay
between the local field and the relative phase between both
fields gives an enhancement of the gain and changes the
system from absorption to gain when the relative phase
between the pump and probe fields is varied.

The paper is organized as follows: Section 2 establishes
the model, i.e., the Hamiltonian of the system and the
evolution equation of the atomic operators by assuming
the rotating wave approximation. The effects of the lo-
cal field in absorption and population inversion when the
atom interacts with an external field are investigated in
Section 3. Section 4 deals with the effects of the local field
in a degenerate pump-probe configuration. Finally, Sec-
tion 5 summarizes the main conclusions.

2 The Bloch equations with local-field
corrections

We study the interaction between an external laser field
E = (1/2)E0e−iωt +c.c. with slowly varying amplitude E0

and angular frequency ω and a medium composed of N
spatially distributed V -type atoms. Each atom consists of
two upper sublevels |3〉, |2〉 coupled to a singlet ground
level |1〉 by one photon transitions. We shall consider the
coupling between the V -type atoms and the local field at
the atom EL which we write as

EL =
1
2
E0Le−iωt + c.c., (1)

E0L being the slowly varying amplitude of the local field.
In order to take into account the induced-coherence

effects by spontaneous emission, the two upper levels |3〉
and |2〉 are coupled by the same vacuum modes to the
ground level |1〉. The resonant frequencies between lev-
els |3〉, |2〉 and |1〉 are ω31, and ω21, respectively. Note
that ω31 − ω21 = ω32, ω32 being the frequency separation
of the excited levels. The Hamiltonian of the system in
the rotating wave approximation is given by [51]

H = �

3∑

m=1

ωmσmm + �

∑

kλ

ωkλa+
kλakλ

+ �

3∑

m=2

∑

kλ

gmkσm1akλ + H.c.

− �

3∑

m=2

[
ΩLme−iωtσm1 + H.c.

]
, (2)

where H.c. stands for the Hermitian conjugate. Here, �ωm

are the energies of the atomic levels, σij = |i〉〈j| are
the atomic operators satisfying the usual commutation
relations

[σij , σpq] = σiqδjp − σpjδqi, (3)

and the closure property σ11 + σ22 + σ33 = I. akλ (a+
kλ) is

the annihilation (creation) operator of the kth mode of the
vacuum field with polarization ekλ (λ = 1, 2) and angular
frequency ωkλ. The parameter gmk is the coupling con-
stant of the atomic transition |m〉 → |1〉 with the vacuum
mode, and is given by

gmk = −
√

ωkλ

2�ε0V
(µ1m · ekλ) m = 2, 3, (4)

where µ1m is the dipolar moment of the transition |m〉 →
|1〉, which we assume to be real valued, and V is the mode
volume of the field. In addition, the last part of equa-
tion (2) represents the interaction of the system with the
local electromagnetic field where ΩLm = µ1m · E0L/(2�)
is the Rabi frequency of the transition |m〉 → |1〉 which
includes the local field correction. The system is studied
using the density-matrix formalism. Following the tra-
ditional approach of Weisskopf and Wigner [12,51,52],
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we obtain the master equation for the reduced density
matrix ρ of the atomic system in an appropriate rotating
frame

∂ρ

∂t
= − i

�
[Hc, ρ] +

1
2
γ3 (2σ13ρσ31 − σ33ρ − ρσ33)

+
1
2
γ2 (2σ12ρσ21 − σ22ρ − ρσ22)

+ γ32 (2σ12ρσ31 − σ32ρ − ρσ32)

+ γ32 (2σ13ρσ21 − σ23ρ − ρσ23) , (5)

where the spontaneous-emission rates from levels |2〉 and
|3〉 to level |1〉 are denoted by γ2 and γ3, respectively

Hc = �∆2σ22 + �∆3σ33 − �

m=3∑

m=2

[ΩLmσm1 + H.c.] , (6)

is the Hamiltonian of the interaction of the atomic sys-
tem with the local field EL in the frame rotating with
the laser frequency ω. We also assume that state |1〉 is at
zero energy. ∆2 = ω21 − ω, and ∆3 = ω31 − ω, are the
detunings of the atomic transitions. Finally, the effect of
quantum interference is represented by the terms of the
γ32 coefficient which is given by [13]

γ32 =
√

γ3γ2

2

(
µ13 · µ12

µ13µ12

)
· (7)

The following normalized variables are defined:

F31 =
2√
γ3γ2

(γ3

2
+ i∆3

)
, (8)

F21 =
2√
γ3γ2

(γ2

2
+ i∆2

)
, (9)

F32 =
2√
γ3γ2

[
(γ3 + γ2)

2
+ i(∆3 − ∆2)

]
, (10)

xLj =
2√
γ3γ2

ΩLj (j = 2, 3), (11)

p =
2√
γ3γ2

γ32. (12)

By using these definitions, and introducing the normal-
ized time τ =

(√
γ3γ2/2

)
t, the evolution equations of the

density matrix elements in the rotating frame take the
form [13,14,19]

∂ρ33

∂τ
= −2

√
γ3

γ2
ρ33 − p (ρ32 + ρ23) + ixL3ρ13

− ix∗
L3ρ31, (13)

∂ρ22

∂τ
= −2

√
γ2

γ3
ρ22 − p (ρ32 + ρ23) + ixL2ρ12

− ix∗
L2ρ21, (14)

∂ρ31

∂τ
= −F31ρ31 − pρ21 − ixL3 (2ρ33 + ρ22 − 1)

− ixL2ρ32, (15)
∂ρ21

∂τ
= −F21ρ21 − pρ31 + ixL2 (1 − ρ33 − 2ρ22)

− ixL3ρ23, (16)
∂ρ32

∂τ
= −F32ρ32 − p (ρ33 + ρ22) + ixL3ρ12

− ix∗
L2ρ31, (17)

where ∗ denotes complex conjugate. This system has been
extensively studied to analyze the effect of quantum inter-
ference between the two decay channels to the ground level
in the absence of LFC. The strength of quantum interfer-
ence is measured by p = µ13 ·µ12/(µ13µ12), which denotes
the alignment of the two transition moments. Quantum
interference is maximum if the transition moment µ13 is
parallel to µ12, but it disappears if they are perpendicular.

In our case, we are going to analyze the behavior of
the system when the local field correction is taken into
account. According to the Lorentz-Lorenz relation [25],
the local field is given by

EL = E +
P
3ε0

, (18)

P being the macroscopic polarization of the medium. We
write the polarization P as P = (1/2)P0e−iωt+c.c., where
P0 is the slowly varying amplitude. In terms of the atomic
variables, it can be written as

P0 = 2N (µ13ρ31 + µ12ρ21) . (19)

Inserting equation (19) in equation (18), we obtain the
normalized local field xL3 and xL2 (Eq. (11)) as

xL2 = x2 + βρ31 + α2ρ21, (20)
xL3 = x3 + α3ρ31 + βρ21, (21)

where α3, α2 and β are the local field parameters de-
fined as

α3 =
N

3�ε0

2√
γ3γ2

µ2
13, (22)

α2 =
N

3�ε0

2√
γ3γ2

µ2
12, (23)

β =
N

3�ε0

2√
γ3γ2

(µ13 · µ12) =
√

α3α2 p, (24)

and xj is the normalized external field xj = (2/
√

γ3γ2)Ωj ,
where Ωj = µ1j · E0/(2�) is the Rabi frequency of the
transition |j〉 → |1〉. By using the modified fields (20, 21)
in the density-matrix equations (13–17), we obtain the
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following set of nonlinear equations

∂ρ33

∂τ
= −2

√
γ3

γ2
ρ33 − p (ρ32 + ρ23) + ix3ρ13

− ix∗
3ρ31 + iβ (ρ21ρ13 − ρ12ρ31) , (25)

∂ρ22

∂τ
= −2

√
γ2

γ3
ρ22 − p (ρ32 + ρ23) + ix2ρ12

− ix∗
2ρ21 + iβ (ρ12ρ31 − ρ21ρ13) , (26)

∂ρ31

∂τ
= − [F31 + iα3 (ρ33 − ρ11) + iβρ32] ρ31

− p [1 + i
√

α2α3 (ρ33 − ρ11)] ρ21

− ix3 (ρ33 − ρ11) − i (x2 + α2ρ21) ρ32, (27)
∂ρ21

∂τ
= − [F21 + iα2 (ρ22 − ρ11) + iβρ23] ρ21

− p [1 + i
√

α2α3 (ρ22 − ρ11)] ρ31

− ix2 (ρ22 − ρ11) − i (x3 + α3ρ31) ρ23, (28)
∂ρ32

∂τ
= −F32ρ32 − p (ρ33 + ρ22) + ix3ρ12 − ix∗

2ρ31

+ i (α3 − α2) ρ31ρ12 + iβ
(|ρ21|2 − |ρ31|2

)
. (29)

There are some interesting differences between equa-
tions (25–29) obtained when considering local field effects
and those valid for a dilute medium (Eqs. (13–17) with-
out LFC, i.e., xLj = xj). Let us consider the equation
of the temporal evolution of optical coherence ρ21 given
by equation (28). In this case, the term proportional to
ρ21 incorporates two additional contributions: the first one
arises from the factor iα2(ρ22 − ρ11), and it represents the
well-known dynamical detuning. It appears in the local
field theory in two-level atoms and leads to the intrinsic
optical bistability (IOB) [32,53]. The second one, iβρ23, is
a new contribution arising from the combination of quan-
tum interference and the local field. This last term van-
ishes when the transition dipole moments are orthogonal
(p = 0). The term in equation (28) proportional to ρ31,
which is the naive interference term in dilute V -type sys-
tem, is also modified by the local field, and it becomes
proportional to population inversion. The third term in
equation (28) is identical to that in a dilute medium. Fi-
nally, the last term in equation (28) is also modified by
the local field with regard to equation (16) by a factor
α3ρ31, thus representing an effective field coupling of the
coherence between the two upper levels. A similar analysis
holds for the temporal evolution of ρ31 (see Eq. (27)).

Moreover, the population equations, which are not
modified by the LFC in two-level atoms and Λ-type
atoms, here present an additional term of the type
iβ (ρ21ρ13 − ρ12ρ31). This new term in the population
equations is related to the polarizations of the excited and
ground levels. And finally, the temporal evolution of the
optical coherence ρ32, given by equation (29), incorporates
the local field in two ways: the first contribution is given by
i(α3 − α2)ρ31ρ12, and vanishes when γ2 = γ3. The second
one is proportional to iβ

(|ρ21|2 − |ρ31|2
)
, and it represents

a combined effect of quantum interference and the local
field.

We must pointed out that we have not considered the
quantum corrections in our model [37–47]. It is well-known
that in the large density regime, radiation trapping of
spontaneously emitted photons takes place which limit the
validity of our model. In the first field configuration stud-
ied (Sect. 3), i.e., a single laser field coupling simultane-
ously the ground state with the two closely excited states,
we have considered the linear regime of the field since in
this case the radiation trapping phenomenon is neglected.
In the second field configuration analyzed (Sect. 4), we
have studied the optical response of the system to a weak
probe field coupling one of the optical transition when a
strong driving field is coupling the other one. In this last
case, the relevance of quantum corrections can not be pre-
dicted. For that reason, and in order to check the validity
of our model, we have carried out numerical simulations
with a model which takes into account the radiation trap-
ping. As a first approximation, we considered our V -type
system interaction with a radiation thermal reservoir at
finite temperature with a constant mean photon number
which means an incoherent pumping mechanism (follow-
ing the work by Matsko et al. [47]). Using this simple
model we obtained that the physical behavior does not
change significantly. This means that our model (25–29)
gives a good qualitative description of the response with-
out considering radiation trapping. Nevertheless, a more
detailed study have to be performed to understand the in-
terplay between quantum interference and radiation trap-
ping. This goes beyond the scope of this work, and should
be the aim of a future work by the authors.

3 Local field effect with a single driving laser
field

In this section we study the influence of the local field
when the atom interacts with a single driving field which
couples simultaneously the ground state with the two ex-
cited levels. The energy-level scheme is shown in Figure 1.
In the following, we shall analyze the dynamics as a func-
tion of the dimensionless variable δk ≡ (∆3 + ∆2)/

√
γ3γ2,

which represents the laser detuning from the resonance
with the center of the excited levels (see Fig. 1). In or-
der to study the effects of LFC on the response of the
system, we have solved equations (25–29). We have cho-
sen the following set of initial conditions: ρ11(0) = 1,
ρ22(0) = ρ33(0) = 0, and ρij(0) = 0 (i �= j). After the
initial transient, the system reaches the steady state. The
final values of coherences and populations obtained for
different values of δk will be used to analyze the atom-
field interaction. We specifically present the absorption
characteristics of the optical coherence on the transitions
|1〉 → |3〉 and |1〉 → |2〉, i.e., Im(ρ31 + ρ21), and the be-
havior of the total population of the two excited sublevels,
(ρ33 +ρ22), as a function of δk, for cases with and without
LFC. In the rest of the section we shall consider the case
γ3 = γ2 = γ, and µ13 = µ12 = µ, so x3 = x2 ≡ x, and
the local field parameters α3 = α2 ≡ α, thus β = αp. We
also consider a small frequency separation of the excited
levels, 2ω32/γ = 0.03.
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Fig. 1. A V-type atom driven by a single-mode laser with
angular frequency ω. γ3 and γ2 are the decay rates from the
excited sublevels to the ground level. δk is the detuning of
the coherent field with the central frequency (from the middle
point of the two upper levels to level |1〉).

In order to study the linear response of the atomic sys-
tem we have calculated the absorption and population in
the steady-state regime by using a very low driving field
x = 0.01 � 1. First of all, let us consider the case without
quantum interference, i.e., p = 0. In this case the dipolar
transition moments are orthogonal and we select the exter-
nal field E to be aligned at 45 degrees with regard to both
transition moments. The typical behavior of Im(ρ31 +ρ21)
is depicted in Figure 2a for different values of the local
field parameter α. In the absence of LFC, the absorption
displays the usual symmetric Lorentzian line shape, where
the maximum is placed at zero detuning. However, when
LFC is taken into account, the curve shifts to positive de-
tuning values although the shape remains constant. The
shift is approximately proportional to the local field pa-
rameter (maximum position 	 α). This behavior is due to
the additional dynamical detuning included in the coher-
ence (Eqs. (27, 28)), which shifts the resonance condition
of the atomic system. This result is quite expected and
well-known in two-level systems [53–55].

In the case with maximal quantum interference (p =
1), we plot in Figure 2b the linear absorption Im(ρ31+ρ21)
as a function of the detuning δk for different local field
parameters α and a low driving field (x = 0.01). In the
absence of LFC the usual symmetric curve appears and
presents a sharp dip around δk = 0. It is well-known that
this non-absorption resonance is due to cancellation of the
spontaneous emission produced by quantum interference
in the two possible decay channels to the ground sublevel.
We see in this figure that LFC deforms the absorption
curves and breaks the symmetry in δk. Note that a sharp
dip still remains at zero detuning (δk = 0), which means
that LFC does not change the non-absorption resonance.
Furthermore, at high values of the local field parameter
the absorption curve shows a dispersion-like behavior. Fi-
nally, it should be noted that for positive values of δk the
absorption is smaller than for negative values of δk in this
linear regime of input field.

An interpretation of the peculiarities concerning the
influence of local field on the optical behavior of the
atomic system can be obtained by looking at the linear
stage of the interaction process. In the linear response
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Fig. 2. Imaginary part of the susceptibility ρ31+ρ21 versus the
detuning δk for a local field parameter α = 0 (dotted curve),
α = 1 (dashed curve) and α = 2 (solid curve). Other pa-
rameters are the frequency separation between upper levels
2ω32/γ = 0.03 and a low driving field x = 0.01. The two fig-
ures correspond to (a) p = 0 and (b) p = 1.

regime, where the laser-atom interaction is weak, equa-
tions (25–29) may be linearized by assuming that for weak
laser fields ρ11 remains essentially constant and nearly
equal to unity, thus ρ22 ≈ ρ33 ≈ 0, while the only evolving
quantities are coherences ρ21 and ρ31. Thus, keeping terms
to first order in the field x, equations (27, 28) reduce to

∂ρ31

∂τ
	 − (F31 − iα) ρ31 − p(1 − iα)ρ21 + ix, (30)

∂ρ21

∂τ
	 − (F21 − iα) ρ21 − p(1 − iα)ρ31 + ix. (31)

The steady-state solution of equations (30, 31) is easily
obtained, thus the linear absorption is given by

Im(ρ31 + ρ21)
x

=

Im

{
2 [(p − 1)(i + α) + δk]

[δk − (p + 1)(i + α)] [δk + (p − 1)(i + α)] − (ω32/γ)2

}
·

(32)
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In the case without quantum interference (p = 0), equa-
tion (32) reduces to

Im(ρ31 + ρ21)
x

=

2
1 + (ω32/γ)2 + (δk − α)2

4 (δk − α)2 +
[
(δk − α)2 1 − (ω32/γ)2

]2 · (33)

This analytical expression agrees with the curves plot-
ted in Figure 2a. The absorption curve presents a nearly
Lorentzian shape and the maximum of the absorption
curve is approximately placed at δk = α. This fact means
that the dynamical detuning, added by LFC, shifts the
resonance condition to a different detuning value. Note
also that in this case the linear evolution of optical coher-
ences ρ31 and ρ21 become decoupled (see Eqs. (30, 31)).
In the case with maximal quantum interference (p = 1)
the linear absorption curve can be written as

Im(ρ31 + ρ21)
x

=
4δ2

k

4δ2
k + [−δ2

k + (ω32/γ)2 + 2αδk]2
· (34)

The analytical curves given by equation (34) agree
with the curves calculated through the simulations (see
Fig. 2b). This curve presents a sharp dip at zero detun-
ing for both cases, with and without LFC, and two max-
imum at both sides of the resonance condition (δk = 0).
In the absence of LFC, the two maximum are placed at
±ω32/γ, which leads to a symmetric curve in δk. How-
ever, when local field is considered, the linear absorption
curves become asymmetric (see Fig. 2b). One of the max-
ima shifts to near zero detuning, δk 	 −0.5(ω32/γ)2/α,
and displays a sharp shape. The other one broadens and
shifts to a higher detuning δk = α + 0.5(ω32/γ)2/α. This
last absorption maximum behaves roughly as in the case
without quantum interference, that is, it follows the shift
of the resonance condition due to the additional detuning
induced by LFC (δk 	 α).

In summary, we have found that the LFC does not
destroy the trapping in the steady-state. A further physi-
cal insight on the underlying mechanisms can be obtained
by studying the temporal evolution of the absorption and
population of the atomic system. Figure 3 shows the time
evolution of absorption (Im(ρ31 + ρ21)) and population
(ρ33 + ρ22) as a function of the normalized time τ for sev-
eral values of α in the case with δk = 0 and p = 1. In the
absence of LFC (α = 0), the system evolves to the trap-
ping state monotonically (dotted line in Fig. 3a). When
α increases, both the absorption and population exhibit
an oscillatory behavior until reaching the steady-state. It
is worth noting that during this time interval the system
presents gain with population inversion during part of the
cycle, before reaching the final value Im(ρ31 + ρ21) = 0.
In other words, the effect of LFC is to introduce a tempo-
ral retardation in achieving the trapping condition. The
origin of this delay arises from the dynamical detuning
introduced by the LFC, thus establishing a competition
between the quantum interference and the local field. Let
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Fig. 3. Temporal evolution of the (a) imaginary part of the
susceptibility ρ31 +ρ21 and (b) population of the excited levels
ρ33+ρ22 for a local field parameter α = 0 (dotted curve), α = 2
(dashed curve) and α = 4 (solid curve). The rest of parameters
are p = 1, δk = 0, 2ω32/γ = 0.03 and x = 0.01.

us analyze for example the case with α = 4 in Figure 3.
For low values of τ the partial inversions ρii−ρ11 (i = 2, 3)
take negative values, thus establishing an initial detuning
in equations (27, 28). As time increases, the excited lev-
els are populated by the action of the external field, so
the dynamical detunings are reduced. At the same time,
a non zero coherence between upper levels is established,
which introduces an additional detuning, and the inter-
ference between the two decay paths is being developed.
Note that at a certain time, Im(ρ31 + ρ21) takes a null
value but the system still evolves slightly until reaching
the final state. Note also that the time necessary to reach
a constant value depends on α. Now we resort again to the
linear equations (30, 31) in order to get an explanation of
this behavior. In this case we are interested in the tran-
sient regime and we look for the homogeneous solution of
equations (30, 31). By taking δk = 0, and p = 1, the com-
plex roots of the corresponding eigenvalue problem are
given by

λ± = −(1 − iα) ±
√
−(i + α)2 − (ω32/γ)2. (35)

The λ− root is highly damped, so it does not produce ob-
servable effects, whereas the λ+ root is responsible of the
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Fig. 4. A V -type configuration. γ3 and γ2 are the decay rates
from the excited sublevels to the ground level. The ground level
is coupled to the excited state |2〉 with a strong laser field (driv-
ing laser E2) of frequency ω2. On the other hand, the ground
level is coupled to the excited state |3〉 with a weaker laser
field (probe laser E3) of frequency ω3 = ω2. At the bottom,
the polarization arrangement is shown.

oscillations and damping of atomic magnitudes, as shown
in Figure 3. We analyzed the dependence of λ+ on α, and
we obtained that both the real and imaginary parts of λ+

are in the order of 10−4 when α ∈ [0, 4]. This result is in
accordance with the time scale used in Figure 3. The real
part of λ+ tends to zero as α increases, which explains
the time necessary to reach the steady state as indicated
in Figure 3. On the other hand, the imaginary part of λ+

is null for α = 0, clearly indicating that oscillations arise
from the dynamical detuning, and it is also α-dependent.

4 Local field effects with a drive and probe
laser fields

In almost every work done on electromagnetically induced
transparency (EIT) and lasing without inversion (LWI),
an ensemble of atoms is generally involved with a config-
uration of a strong driving field which induces the coher-
ence that can lead to gain for a weak probe [19,56]. In
three-level atoms, gain may be obtained at wavelengths
significantly different from the wavelength of the strong
field used. Zhu et al. have studied the quenching of spon-
taneous emission using an open V -type atom, and pro-
vided experimental verification of their predictions [22].
Besides, it has been pointed out that the relative phase
between the two coherent fields can influence consider-
ably the fluorescence spectrum and the gain of the probe
field. Paspalakis et al. have used the relative phase to con-
trol the spontaneous emission in a four-level system [19].
The same authors have shown that lasing with or with-
out inversion and enhancement of the index of refraction
can be obtained in V atoms with closely excited levels,

and they showed that these properties are phase depen-
dent [19,20,57]. In this section we analyze the influence of
local field in a degenerate pump-probe configuration when
the relative phase is accounted for.

We consider the pump-probe configuration shown in
Figure 4. The transition dipole moments µ13 and µ12

are non orthogonal. The pump field (E02e−iφ2) drives
the |2〉 → |1〉 transition (µ13 · E02 = 0) and similarly
the probe field (E03e−iφ3) drives the |3〉 → |1〉 transi-
tion (µ12 ·E03 = 0). The energy-level scheme is shown in
Figure 4 together with the arrangement of the field po-
larizations [56]. We assume both fields with equal angular
frequency. Therefore, the total field is given by

E0 = E02e−iφ2 + E03e−iφ3 . (36)

By taking into account the above polarization restrictions,
we arrive at the following relations between the normalized
fields and the quantum interference parameter p = µ13 ·
µ12/(µ13µ12) = cos(θ):

x3 =
2√
γ3γ2

µ13E03 sin(θ)
2�

e−iφ3 = |x3|e−iφ3

= x0
3

√
1 − p2e−iφ3 , (37)

x2 =
2√
γ3γ2

µ12E02 sin(θ)
2�

e−iφ2 = |x2|e−iφ2

= x0
2

√
1 − p2e−iφ2 . (38)

By using these normalized fields (37, 38) in density-matrix
equations (25–29), we transform to a new frame with

ρ31 = ρ31e−iφ3 , (39)

ρ21 = ρ21e−iφ2 , (40)

ρ32 = ρ32e−i(φ3−φ2) = ρ32e−iφ, (41)

thus obtaining the following set of nonlinear equations (for
the sake of simplicity we use the same notation for the ρij

elements in both frames)

∂ρ33

∂τ
= −2

√
γ3

γ2
ρ33 − p

(
ρ32e−iφ + ρ23eiφ

)

+ i|x3| (ρ13 − ρ31) + iβ
(
ρ21ρ13eiφ − ρ12ρ31e−iφ

)
,

(42)
∂ρ22

∂τ
= −2

√
γ2

γ3
ρ22 − p

(
ρ32e−iφ + ρ23eiφ

)

+ i|x2| (ρ12 − ρ21) + iβ
(
ρ31ρ12e−iφ − ρ13ρ21eiφ

)
,

(43)
∂ρ31

∂τ
= − [

F31 + iα3 (ρ33 − ρ11) + iβρ32e−iφ
]
ρ31

− pρ21eiφ − i|x3| (ρ33 − ρ11)

− i (|x2| + α2ρ21) ρ32 − iβρ21eiφ (2ρ33 + ρ22 − 1) ,
(44)



84 The European Physical Journal D

∂ρ21

∂τ
= − [

F21 + iα2 (ρ22 − ρ11) + iβρ23eiφ
]
ρ21

− pρ31e−iφ − i|x2| (ρ22 − ρ11)

− i (|x3| + α3ρ31) ρ23 + iβρ31 (ρ11 − ρ22) e−iφ,
(45)

∂ρ32

∂τ
= −F32ρ32 − peiφ (ρ33 + ρ22)

+ i (|x3| + α3ρ31) ρ12 − i (|x2| + α2ρ12) ρ31

+ iβ
(|ρ12|2 + |ρ13|2

)
eiφ. (46)

It is worth mentioning that the new terms induced in these
equations by the local field parameter β also depend on φ.
Note this dependence occurs only in the case where p �= 0.

Following, we shall analyze the dynamics as a function
of the dimensionless probe laser detuning, 2∆3/

√
γ3γ2.

We consider the pump field to be on resonance with
transition |2〉 → |1〉, i.e., ∆2 = 0. This condition im-
plies that ∆3 	 ω32 (see Fig. 4), so tuning the probe
laser means changing the separation between the excited
levels. In order to study the effect of LFC on the re-
sponse of the system, we have solved the equations (42–46)
with the following set of initial conditions: ρ11(0) = 1,
ρ22(0) = ρ33(0) = 0 and ρij(0) = 0 (i �= j). After an
initial transient, the system reaches a steady state. We
are interested in the steady state behavior of the probe
transition |3〉 → |1〉, that is, in the population difference
(ρ33 − ρ11), and in the probe absorption of the system
which is computed as follows [58]: the polarization ρ31

can be approximated by

ρ31 = ρ
(0)
31 + ρ31L x3, (47)

where ρ
(0)
31 ≡ ρ31(x3 = 0) is the lowest order nonlinear

susceptibility (see Eq. (7) in Ref. [58]). Then, the probe
absorption is related with the imaginary part of (ρ31 −
ρ
(0)
31 )/x3 ≡ ρ31L. In this way, a negative value of Im(ρ31L)

implies that the system exhibits gain.
First, let us consider the effect of LFC on the behavior

of the system without quantum interference (p = 0) and
equal decay rates, γ3 = γ2. Figure 5 presents the steady-
state of population difference ρ33−ρ11 and the absorption
Im(ρ31L) versus the dimensionless probe laser detuning
for the cases with and without LFC. Both magnitudes
have a double-peaked shape centered at ∆3 = 0, and the
two absorption peaks are located at 2∆3/

√
γ3γ2 = ±|x2|,

corresponding to the transitions between state |3〉 and the
Autler-Townes doublet (dressed states) generated by the
strong coherent field |x2|. We can see that the effect of
the local field is to shift the peaks to positive detunings.
Note that in the case where p = 0, transition |3〉 → |1〉 is
weakly coupled to |2〉 → |1〉 since the terms with p and
β vanish in equation (44), and the influence of LFC is
represented by the dynamical detuning (iα3(ρ33 − ρ11)),
and the second order term −iα2ρ21ρ32.

As noted in the previous section, the case with quan-
tum interference will offer new possibilities. As we have
mentioned above, the strength of quantum interference
must be smaller than 1, thus in the following we assume
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Fig. 5. (a) Population difference ρ33 − ρ11 and (b) imaginary
part of the susceptibility ρ31L versus the dimensionless probe
detuning 2∆3/

√
γ3γ2 for a local field parameter α = 0 (dotted

curve) and α = 5 (solid curve). The rest of parameters are;
p = 0, γ3 = γ2, x0

3 = 1, x0
2 = 20, ∆2 = 0, and φ = 0.

p = 0.99. We will consider both fields to be in phase (φ =
0) and the same decay rates γ3 = γ2 for the transitions.
In the absence of LFC, inversion is plotted in Figure 6a
(dotted curve) and probe absorption is shown in Figure 6b.
Both magnitudes show a symmetric double-peaked shape.
Note that neither gain (negative value of Im(ρ31L)) nor
inversion (positive value of ρ33 − ρ11) appear. The peaks
are located at 2∆3/

√
γ2γ3 = ±x0

2

√
1 − p2, which in mod-

ulus represents the effective Rabi frequency. The behavior
is very similar to the case where p = 0. Nevertheless, sig-
nificant changes take place when LFC is considered. In
relation with population difference (ρ33 − ρ11), we obtain
that both peaks increase and reach positive values, i.e.,
inversion is allowed at certain detuning intervals. More-
over, one of the two peaks, the ones placed at positive
detunings, narrows, while the other peak broadens (see
Fig. 6a).

The probe absorption in the case α = 2 becomes asym-
metric on either side of zero detuning, although the gen-
eral behavior is very similar to the case α = 0. However,
when LFC increases to α = 4, a dramatic change occurs.
The solid curve in Figure 6b shows that the Autler-Townes
component at positive detuning presents a dispersive-like
shape with a gain region. This gain is accompanied by
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Fig. 6. (a) Population difference ρ33 − ρ11 and (b) imaginary
part of the susceptibility ρ31L versus the dimensionless probe
detuning 2∆3/

√
γ3γ2 for a local field parameter α = 0 (dotted

curve), α = 2 (dashed curve), and α = 4 (solid curve). The
rest of parameters are; p = 0.99, γ3 = γ2, x0

3 = 1, x0
2 = 20,

∆2 = 0, and φ = 0.

positive inversion. Therefore LFC induces gain with inver-
sion. Another remarkable effect induced by the presence
of the local field and quantum interference is the strong
absorption peak five times stronger at its maximum value
than the analogous case without local field (α = 0). This
peak appears very near to the gain region, so a slightly
change in the probe detuning can lead the system from
the strong absorption region to the gain region.

In the absence of LFC and with quantum interference,
it is well-known that by reducing the decay constant of
the probe transition (γ3 < γ2), the system exhibits gain
with inversion [58]. Figure 7 shows the probe absorption
versus the dimensionless detuning 2∆3/

√
γ3γ2 by using a

ratio between the decay constants γ3/γ2 = 0.5, with and
without LFC. In the absence of LFC we recover the results
obtained by Gong et al. [58]: two symmetric gain regions
placed at the Autler-Townes doublet appear. Whereas if
α2 �= 0, the left-side component of the doublet flips sign
and the other is highly enhanced.

In all the previous cases the relative phase φ was set
to zero. Now, we analyze the optical behavior of the sys-
tem when the relative phase between the two coherent

-6 -4 -2 0 2 4 6
-0.10

-0.05

0.00

0.05

0.10

Im
( ρ

31
 L
)

2∆
3/(γ3

γ
2)

0.5

 α2=0
 α2=5

Fig. 7. Imaginary part of the susceptibility ρ31L versus the
dimensionless probe detuning 2∆3/

√
γ3γ2 for a local field pa-

rameter α = 0 (dotted curve) and α2 = 5 (solid curve). The
rest of parameters are; p = 0.99, γ3/γ2 = 0.5, x0

3 = 1, x0
2 = 20,

∆2 = 0, and φ = 0.

fields is varied. It is well-known that, in the absence of
LFC and with quantum interference, V -type atoms ex-
hibits a phase-dependent population inversion [58]. Thus
a phase dependence is expected on the dynamical detun-
ing induced by LFC. Figure 8a shows the probe absorp-
tion for α2 = 5, γ3/γ2 = 0.5, and two values of the
relative phase. In the case where φ = π/2, the system
presents three regions with gain. The left-side component
of the doublet flips sign, while the other is slightly dis-
placed when φ changes from 0 to π/2. In the central re-
gion of gain, EIT can still be obtained in contrast with
the case where α2 = 0. That is, the combined effect of
the relative phase and LFC plays an important role in the
gain behavior. To emphasize this point, Figure 8b presents
the probe absorption as a function of the relative phase,
when the probe is tuned near the left Autler-Townes com-
ponent (2∆3/

√
γ3γ2 = −3.45). By varying the relative

phase, the probe laser may experience gain, transparency
or absorption.

5 Conclusions

In summary, we have analyzed the influence of near dipole-
dipole interaction in a dense collection of V -type atoms
when quantum interference between the two decay chan-
nels to the ground atomic level is considered. We have
analyzed the effects of LFC using a single laser field in
the linear regime coupling simultaneously the ground state
with the two excited levels. We have illustrated that co-
herent population trapping is not destroyed when LFC is
considered. In particular, we have shown that the non-
absorption dip persists. LFC introduces a time delay to
attain the effective population trapping. We have shown
that this time delay increases as the strength of the LFC
increases. This result may be explained qualitatively by
considering the linear equations (30, 31) in the transient
regime. Our results are in accordance with those reported
by Jyotsna and Agarwal [50] in a dense collection of Λ-type
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√
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of parameters are the same than in (a).

atoms. In the absence of quantum interference, no trap-
ping is obtained even by considering LFC. The imaginary
part of the susceptibility curve remains essentially unal-
tered in shape and shifts to positive detunings. This is an
expected result which is well-known in two-level systems.

We have analyzed the effects of LFC in a degenerate
pump-probe configuration. In the absence of quantum in-
terference the most relevant result is concerned with the
shift of the Autler-Townes doublet to positive detunings,
which can be interpreted as a consequence of the frequency
renormalization introduced by the dynamical detuning. In
the case with quantum interference, equal decay rates and
both fields to be in phase, a change from absorption to gain
with inversion in one of the components of the doublet is
obtained by raising the magnitude of LFC. At different
decay rates of the two upper transitions the gain in one
of the components of the doublet is enhanced whereas the
other component is strongly distorted exhibiting the pos-
sibility of null absorption at certain detuning. Finally the
effect of the relative phase between the pump and probe
fields, manifests itself through a dramatic change in the

probe absorption (see Fig. 8): it is possible to change one
of the Autler-Townes component from absorption to gain
depending on the value of this relative phase. This last
effect appears only if quantum interference and LFC are
present simultaneously.

When quantum interference is considered the interpre-
tation of the effects of LFC reveals as a complex task which
arises from the nonlinear couplings involved.
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of the manuscript. This work was supported by project
No. BFM2000-0796 (Spain).
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